Biological Productivity and its Influence on Cloud Formation. (by Diego Fdez-Sevilla, PhD)


Biological Productivity and its Influence on Cloud Formation. (by Diego Fdez-Sevilla, PhD)

Recently I have found a couple of articles and press releases which have captured my attention based on sharing a common ground that I believe has a noteworthy relevance still to be fully understood in environmental and climatic assessments, “the influence of biological productivity on cloud formation.”

This subject is linked with some of my previous posts due to the nature of land use and land cover impact, the effect of solar activity in biological productivity and the impact of extending GM crop farming due to its enhanced biological productivity.

Cloud droplets form on aerosol particles that can either be directly emitted, such as evaporated sea spray, or else form through a process known as nucleation, in which trace atmospheric vapours cluster together to form new particles that may grow to become cloud seeds. Around half of all cloud seeds are thought to originate from nucleated particles, but the process of nucleation is poorly understood.

 

New light on cloud formation

May 2014

In an open access paper published in the journal Science, CERN’s CLOUD experiment has shown that biogenic vapours emitted by trees and oxidised in the atmosphere have a significant impact on the formation of clouds, thus helping to cool the planet. These biogenic aerosols are what give forests seen from afar their characteristic blue haze. The CLOUD study shows that the oxidised biogenic vapours bind with sulphuric acid to form embryonic particles which can then grow to become the seeds on which cloud droplets can form. This result follows previous measurements from CLOUD showing that sulphuric acid alone could not form new particles in the atmosphere as had been previously assumed.

Sulphuric acid is thought to play a key role, but previous CLOUD experiments have shown that, on its own, sulphuric acid has a much smaller effect than had been assumed. Sulphuric acid in the atmosphere originates from sulphur dioxide, for which fossil fuels are the predominant source. The new result shows that oxidised biogenic vapours derived from alpha-pinene emitted by trees rapidly form new particles with sulphuric acid. Ions produced in the atmosphere by galactic cosmic rays are found to enhance the formation rate of these particles significantly, but only when the concentrations of sulphuric acid and oxidised organic vapours are relatively low. The CLOUD paper includes global modelling studies which show how this new process can account for the observed seasonal variations in atmospheric aerosol particles, which result from higher global tree emissions in the northern hemisphere summer.

Clouds over amazonThese clouds are almost certainly a result of evapotranspiration. The clouds are distributed evenly across the forest, but no clouds formed over the Amazon River and its floodplain, where there is no tall canopy of trees. While water may evaporate from the Amazon River itself, the air near the ground is too warm for clouds to form. Trees, on the other hand, release water vapor at higher levels of the atmosphere, so the water vapor more quickly reaches an altitude where the air is cool enough for clouds to form. When water vapor condenses, it releases heat into the atmosphere. (NASA image courtesy Jeff Schmaltz, MODIS Rapid Response at NASA GSFC )

“The reason why it has taken so long to understand the vapours responsible for new particle formation in the atmosphere is that they are present in minute amounts near one molecule per trillion air molecules”, explains Jasper Kirkby. “Reaching this level of cleanliness and control in a laboratory experiment is at the limit of current technology, and CERN know-how has been crucial for CLOUD being the first experiment to achieve this performance.”

Biogenic vapours join another class of trace vapours, known as amines, that have previously been shown by CLOUD to cluster with sulphuric acid to produce new aerosol particles in the atmosphere. Amines, however, are only found close to their primary sources such as animal husbandry, whereas alpha-pinene is ubiquitous over landmasses. This latest result from CLOUD could therefore explain a large fraction of the birth of cloud seeds in the lower atmosphere around the world. It shows that sulphuric acid aerosols do indeed have a significant influence on the formation of clouds, but they need the help of trees.

 

Measuring Biological Productivity. When plant cells photosynthesize, part of the energy they produce is emitted as fluorescent light.

April, 2014

Rainforests, whether in the Amazon, Southeast Asia, or Central America, are hotspots of organic productivity. Fueled by abundant rain and a reliable stream of nutrients, the Amazon blooms year-round. For a brief period each summer, however, the ingenuity of humankind trumps even the mighty rainforests at biological production. A group of researchers, including Christian Frankenberg and Joanna Joiner have determined that during peak growing season, the Midwest U.S. Corn Belt is the most productive land on Earth. In other words, there’s more photosynthesis going on here than in the Amazon.”

Rainforests, whether in the Amazon, Southeast Asia or Central America, are hotspots of organic productivity, teeming with life. Fueled by abundant rain and a reliable stream of nutrients, the Amazon blooms year-round. For a brief period each summer, however, the ingenuity of humankind trumps even the mighty rainforests at biological production. At the peak of the growing season, says NASA, the Midwest U.S. corn belt is the most productive place on Earth—there’s more photosynthesis going on here than even in the Amazon.

When plant cells photosynthesize, part of the energy they produce is emitted as fluorescent light. By measuring the strength of this fluorescence from space, scientists can get a measure of plant productivity—as they did in a recent study. NASA has a video explaining in more detail the process of fluorescence, and how the image above was put together:

The difference between the corn belt productivity’s and the Amazon’s is the incredible amount of inputs that go into creating growth in the U.S. We have to draw on vast resources to power unnatural temporary growth in a concentrated area. But, for a short period of time, it means we can produce far beyond what natural ecosystems like the Amazon can muster.

The effect of atmospheric aerosols on climate sensitivity.

March, 2014

Drew Shindell, a climatologist at NASA’s Goddard Institute for Space Studies in New York, hinges on a new and more detailed calculation of the sensitivity of Earth’s climate to the factors that cause it to change.

“Shindell’s focuses on improving our understanding of how airborne particles, called aerosols, drive climate change in the Northern Hemisphere. Aerosols are produced by both natural sources – such as volcanoes, wildfire and sea spray – and sources such as manufacturing activities, automobiles and energy production. Depending on their make-up, some aerosols cause warming, while others create a cooling effect. In order to understand the role played by carbon dioxide emissions in global warming, it is necessary to account for the effects of atmospheric aerosols.

While multiple studies have shown the Northern Hemisphere plays a stronger role than the Southern Hemisphere in transient climate change, this had not been included in calculations of the effect of atmospheric aerosols on climate sensitivity. Prior to Shindell’s work, such calculations had assumed aerosol impacts were uniform around the globe.

This difference means previous studies have underestimated the cooling effect of aerosols. When corrected, the range of likely warming based on surface temperature observations is in line with earlier estimates, despite the recent slowdown.

One reason for the disproportionate influence of the Northern Hemisphere, particularly as it pertains to the impact of aerosols, is that most man-made aerosols are released from the more industrialized regions north of the equator. Also, the vast majority of Earth’s landmasses are in the Northern Hemisphere. This furthers the effect of the Northern Hemisphere because land, snow and ice adjust to atmospheric changes more quickly than the oceans of the world.”

Absence Of Clouds Caused Pre-human Supergreenhouse Periods

April, 2008.

In a world without human-produced pollution, biological productivity controls cloud formation and may be the lever that caused supergreenhouse episodes during the Cetaceous and Eocene, according to Penn State paleoclimatologists.

In general, the proxies indicate that the Cretaceious and Eocene atmosphere never exceeded four times the current carbon dioxide level, which is not enough for the models to create supergreenhouse conditions. Some researchers have tried increasing the amount of methane, another greenhouse gas, but there are no proxies for methane. Another approach is to assume that ocean currents changed, but while researchers can insert new current information into the models, they cannot get the models to create these ocean current scenarios.

According to the researchers, changes in the production of cloud condensation nuclei, the tiny particles around which water condenses to form rain drops and cloud droplets, decreased Earth’s cloud cover and increase the sun’s warming effect during supergreenhouse events.

Normal cloud cover reflects about 30 percent of the sun’s energy back into space. Kump and Pollard were looking for a scenario that allowed in 6 to 10 percent more sunlight.

“In today’s world, human generated aerosols, pollutants, serve as cloud condensation nuclei,” says Kump. “Biologically generated gases are dominant in the prehuman world. The abundance of these gases is correlated with the productivity of the oceans.”

Today, the air contains about 1,000 particles that can serve as cloud condensation nuclei (CCN) in a cubic centimeter (less than a tenth of a cubic inch). Pristine ocean areas lacking human produced aerosols are difficult to find, but in those areas algae produce dimethylsulfide that eventually becomes the CCNs of sulfuric acid or methane sulfonic acid.

Algae’s productivity depends on the amounts of nutrients in the water and these nutrients come to the surface by upwelling driven by the winds. Warming would lead to ocean stratification and less upwelling.

“The Cetaceous was biologically unproductive due to less upwelling in the ocean and thermal stress on land and in the sea,” says Kump. “That means fewer cloud condensation nuclei.”

When there are large numbers of CCN, there are more cloud droplets and smaller droplets, consequently more cloud cover and brighter clouds. With fewer CCN, there are fewer droplets and they are larger. The limit to droplet size is 16 to 20 microns because the droplets then are heavy enough to fall out as rain.

“We began with the assumption that what would change was not the extent of clouds, but their brightness,” says Kump. “The mechanism would lead to reduced reflection but not cloudiness.”

What they found was that the clouds were less bright and that there were also fewer clouds. If they lowered the production of biogenic CCNs too much, their model created a world with remarkable warming inconsistent with life. However, they could alter the productivity in the model to recreate the temperature regime during supergreenhouse events.

“The model reduces cloud cover from about 64 percent to 55 percent which lets in a large amount of direct sunlight,” Kump says. “The increased breaks in the clouds, fewer clouds and less reflective clouds produced the amount of warming we were looking for.”

 

References

CERN experiment sheds new light on cloud formation. 22 May 2014.

Under the Summer Sun, the Corn Belt Is the Most Biologically Productive Place on Earth, Smithsonian Magazine. April 8, 2014

Long-Term Warming Likely to Be Significant Despite Recent Slowdown. March 11, 2014

Absence Of Clouds Caused Pre-human Supergreenhouse Periods. April 11, 2008

About Diego Fdez-Sevilla, PhD.

Data policy The products processed by "Diego Fdez-Sevilla PhD" are made available to the public for educational and/or scientific purposes, without any fee on the condition that you credit "Diego Fdez-Sevilla PhD" as the source. Copyright notice: © Diego Fdez-Sevilla PhD (year) orcid: orcid.org/0000-0001-8685-0206 and the link to its source at diegofdezsevilla.wordpress or permanent DOI found at Resarchgate. Profile and verified scientific activity also at: https://publons.com/researcher/3387860/diego-fernandez-sevilla/ Should you write any scientific publication on the results of research activities that use Diego Fdez-Sevilla PhD products as input, you shall acknowledge Diego Fdez-Sevilla's PhD Project in the text of the publication and provide an electronic copy of the publication to the author (d.fdezsevilla@gmail.com). If you wish to use the Diego Fdez-Sevilla PhD products in advertising or in any commercial promotion, you shall acknowledge Diego Fdez-Sevilla PhD Project and you must submit the layout to Diego Fdez-Sevilla PhD for approval beforehand (d.fdezsevilla@gmail.com). The work here presented has no economic or institutional support. Please consider to make a donation to support the means for making sustainable the energy, time and resources required. Also any sponsorship or mentoring interested would be welcome. Intellectual Property All articles and imagery are licensed under a Creative Commons Attribution 4.0 International License. By Diego Fdez-Sevilla, PhD. More guidance on citing this web as a source can be found at NASA webpage: http://solarsystem.nasa.gov/bibliography/citations#! For those publications missing DOIs at the ResearchGate profile vinculated with this project, DOIs can be generated on demand by request at email: d.fdezsevilla(at)gmail.com. **Author´s profile: Born in 1974. Bachelor in General Biology, Masters degree "Licenciado" in Environmental Sciences (2001, Spain). PhD in Atmospheric Biology and Aerosols Dispersion (2007, UK). Lived, acquired training and worked in Spain, UK, Germany and Poland. I have shared the outcome from my work previous to 2013 as scientific speaker in events held in those countries as well as in Switzerland and Finland. After years performing research and working in institutions linked with environmental research and management, in 2013 I found myself in a period of transition searching for a new position or funding to support my own line of research. In the current competitive scenario, in order to demonstrate my capacities instead of just moving my cv waiting for my next opportunity to arrive, I decided to invest my energy and time in opening my own line of research sharing it in this blog. In March 2017 the budget reserved for this project has ended and its weekly basis time frame discontinued until new forms of economic and/or institutional support are incorporated into the project. The value of the data and the original nature of the research presented in this platform and at LinkedIn has proved to be worthy of consideration by the scientific community as well as for publication in scientific journals. However, without a position as member of an institution, it becomes very challenging to be published. I hope that this handicap do not overshadow the value of my achievements and that the Intellectual Property Rights generated with the license of attribution attached are respected and considered by the scientists involved in similar lines of research. **Any comment and feedback aimed to be constructive is welcome as well as any approach exploring professional opportunities.** In this blog I publish pieces of research focused on addressing relevant environmental questions. Furthermore, I try to break the barrier that academic publications very often offer isolating scientific findings from the general public. In that way I address those topics which I am familiar with, thanks to my training in environmental research, making them available throughout my posts. (see "Framework and Timeline" for a complete index). At this moment, I am living in Spain with no affiliation attachments. Free to relocate geographically worldwide. If you feel that I could be a contribution to your institution, team and projects, don´t hesitate in contact me at d.fdezsevilla (at) gmail.com or consult my profile at LinkedIn, ResearchGate and Academia.edu. Also, I'd appreciate information about any opportunity that you might know and believe it could match with my aptitudes. The conclusions and ideas expressed in each post as part of my own creativity are part of my Intellectual Portfolio and are protected by Intellectual Property Laws. Licensed under Creative Commons Attribution-NonCommercial conditions. In citing my work from this website, be sure to include the date of access and DOIs found at the Framework and Timeline page and ResearchGate. (c)Diego Fdez-Sevilla, PhD, 2020. Filling in or/and Finding Out the gaps around. Publication accessed 20YY-MM-DD at https://diegofdezsevilla.wordpress.com/ ***
This entry was posted in Biological productivity, Filling in, Finding out and tagged , , , , , , , , , , , , , , , , , . Bookmark the permalink.

22 Responses to Biological Productivity and its Influence on Cloud Formation. (by Diego Fdez-Sevilla, PhD)

  1. (linkedIn member)
    District Conservationist at USDA-NRCS

    I like your articles. They correlate with my general thoughts on the subject, however before I go out ranting about it, is it possible you could place some references to the research at the bottom or here? I’d like to read it myself and spread the word, but I like knowing exactly where the info is coming from. Thank you!

    Like

    • Diego Fernández Sevilla, Ph.D.
      Aerobiologist and Environmental Research Analyst in active job search mode worldwide

      Hi,
      I wonder if you have found any problem following the links in the article but I have checked their functionality and they look ok.
      The information I share in my post is what I consider most recent and relevant in the subject to make a point. The criteria that I have applied to select this information is based on many hours of research and a career in environmental and aerobiological sciences. I suppose that for me, same as it could be in your case, what you call “general thoughts on the subject” are in fact the result of connecting dots from many sources. I would love to invest full time in performing a proper dissertation based on a well documented literature review as when I have hold a research position. But, at this moment, I am in a transition period, searching for a job position and I don´t have the economic support, resources or access to journal subscriptions.
      The post you see, it is not a peer reviewed article giving answers. It only tries to be a standing point built upon scientific knowledge and critical thinking aiming to promote knowledge exchange, healthy debate and to enhance the capabilities of networking. Since I can not produce my own data to do research, at the same time that I search for job positions, peer review for journals and write applications, I keep active doing my own research looking for connections which might have not been fully addressed yet between already published studies.
      By making myself and my skills visible I am hoping to find a shared interest and common ground where I could become considered as an asset by possible persons or groups interested in considering me to join their efforts throughout a job position.

      Like

  2. Pingback: “Effects of air pollution on european Ecosystems” European Environment Agency technical report. Press release (by Diego Fdez-Sevilla) | diego fdez-sevilla

  3. Pingback: Effects of ecosystem’s degradation and the EEA report. (by Diego Fdez-Sevilla) | diego fdez-sevilla

  4. Pingback: Inland sanctuaries of water vapour for atmospheric circulation. (by Diego Fdez-Sevilla) | diego fdez-sevilla

  5. Here I want to leave a link to a study carried out by German scientists about the role played by some bacteria in the process of cloud formation. This might be another piece in the puzzle of how much biotic processes are involved in climatic systems.

    “German scientists discover bacteria that make ice, clouds and rain”
    Learn more: http://www.naturalnews.com/042895_ice-making_bacteria_precipitation_German_scientists.html##ixzz3AGqI20xC

    Scientists have discovered that a humble species of bacteria may play a major role in producing planetary climates by “seeding” clouds with ice-producing proteins.
    Scientists have known for decades that bacterial species such as Pseudomonas syringae produce proteins on their outer membranes that somehow enable water to freeze at higher-than-usual temperatures. These proteins cause ice to form on plants, damaging the plant’s tissues and allowing the bacteria to invade and feed.

    But when the bacteria die, ice-forming proteins can enter the atmosphere and actually cause rain to form in the clouds above. Because these bacteria are so prolific, they may have a significant effect on the global climate.

    Like

  6. Pingback: Biotic players and atmospheric processes. Another piece of the puzzle. | diego fdez-sevilla

  7. Pingback: Following the steps of water vapour in climatic events (By Diego Fdez-Sevilla) | diego fdez-sevilla

  8. Pingback: Extreme Climatic Events of 2013. AMS Report (by Diego Fdez-Sevilla) | diego fdez-sevilla

  9. Pingback: A Groundhog forecast on climate at the North Hemisphere. (by Diego Fdez-Sevilla) | diego fdez-sevilla

  10. Pingback: In climate it is becoming Less probable to not have a High probability. (by Diego Fdez-Sevilla) | diego fdez-sevilla

  11. Pingback: Something for the curious minds. Climate and Streamlines (by Diego Fdez-Sevilla) | diego fdez-sevilla

  12. Pingback: Discussing Climatic Teleconnections. Follow Up On My Previous Research (by Diego Fdez-Sevilla) | diego fdez-sevilla

  13. Pingback: Plant growth, CO2, Soil and Nutrients. (by Diego Fdez-Sevilla) | diego fdez-sevilla

  14. Pingback: Climbing The Hill Of Development (by Diego Fdez-Sevilla, PhD.) | diego fdez-sevilla, PhD.

  15. Pingback: Atmospheric Dynamics And Shapes (by Diego Fdez-Sevilla, PhD.) | Diego Fdez-Sevilla, PhD.

  16. Pingback: Atmospheric Dynamics And Shapes (by Diego Fdez-Sevilla, PhD.) | Diego Fdez-Sevilla, PhD.

  17. Pingback: “Effects of air pollution on european Ecosystems” European Environment Agency technical report. Press release (by Diego Fdez-Sevilla) | Diego Fdez-Sevilla, PhD.

  18. Pingback: Research on real-time Climatic developments. 2018 Review over the line of research presented by Diego Fdez-Sevilla PhD | Diego Fdez-Sevilla, PhD.

  19. Pingback: 16 May 2019 Follow-Up on Atmospheric Dynamics over Europe and Climatic Implications (By Diego Fdez-Sevilla PhD) | Diego Fdez-Sevilla, PhD.

  20. Pingback: Climate and Weather. Lost in translation? (By Diego Fdez-Sevilla PhD) | Diego Fdez-Sevilla, PhD.

  21. Pingback: Rayleigh-Taylor Instabilities and Weather Developments under Climate Change (Diego Fdez-Sevilla PhD) | Diego Fdez-Sevilla, PhD.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.